extension | φ:Q→Aut N | d | ρ | Label | ID |
C23.1(C2×C3⋊S3) = A4⋊Dic6 | φ: C2×C3⋊S3/C6 → S3 ⊆ Aut C23 | 72 | 6- | C2^3.1(C2xC3:S3) | 288,907 |
C23.2(C2×C3⋊S3) = C4×C3⋊S4 | φ: C2×C3⋊S3/C6 → S3 ⊆ Aut C23 | 36 | 6 | C2^3.2(C2xC3:S3) | 288,908 |
C23.3(C2×C3⋊S3) = C12⋊S4 | φ: C2×C3⋊S3/C6 → S3 ⊆ Aut C23 | 36 | 6+ | C2^3.3(C2xC3:S3) | 288,909 |
C23.4(C2×C3⋊S3) = C2×C6.7S4 | φ: C2×C3⋊S3/C6 → S3 ⊆ Aut C23 | 72 | | C2^3.4(C2xC3:S3) | 288,916 |
C23.5(C2×C3⋊S3) = (C2×C6)⋊4S4 | φ: C2×C3⋊S3/C6 → S3 ⊆ Aut C23 | 36 | 6 | C2^3.5(C2xC3:S3) | 288,917 |
C23.6(C2×C3⋊S3) = C62.110D4 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C23 | 72 | | C2^3.6(C2xC3:S3) | 288,281 |
C23.7(C2×C3⋊S3) = C62.38D4 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C23 | 72 | | C2^3.7(C2xC3:S3) | 288,309 |
C23.8(C2×C3⋊S3) = C62.223C23 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C23 | 144 | | C2^3.8(C2xC3:S3) | 288,736 |
C23.9(C2×C3⋊S3) = C62.227C23 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C23 | 144 | | C2^3.9(C2xC3:S3) | 288,740 |
C23.10(C2×C3⋊S3) = C62.228C23 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C23 | 144 | | C2^3.10(C2xC3:S3) | 288,741 |
C23.11(C2×C3⋊S3) = C62.229C23 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C23 | 144 | | C2^3.11(C2xC3:S3) | 288,742 |
C23.12(C2×C3⋊S3) = C62.72D4 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C23 | 144 | | C2^3.12(C2xC3:S3) | 288,792 |
C23.13(C2×C3⋊S3) = C62.254C23 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C23 | 144 | | C2^3.13(C2xC3:S3) | 288,793 |
C23.14(C2×C3⋊S3) = C62.256C23 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C23 | 144 | | C2^3.14(C2xC3:S3) | 288,795 |
C23.15(C2×C3⋊S3) = C62.258C23 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C23 | 144 | | C2^3.15(C2xC3:S3) | 288,797 |
C23.16(C2×C3⋊S3) = C62.221C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C23 | 144 | | C2^3.16(C2xC3:S3) | 288,734 |
C23.17(C2×C3⋊S3) = C62⋊6Q8 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C23 | 144 | | C2^3.17(C2xC3:S3) | 288,735 |
C23.18(C2×C3⋊S3) = C22⋊C4×C3⋊S3 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C23 | 72 | | C2^3.18(C2xC3:S3) | 288,737 |
C23.19(C2×C3⋊S3) = C62.225C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C23 | 144 | | C2^3.19(C2xC3:S3) | 288,738 |
C23.20(C2×C3⋊S3) = C62⋊12D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C23 | 72 | | C2^3.20(C2xC3:S3) | 288,739 |
C23.21(C2×C3⋊S3) = C62.69D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C23 | 144 | | C2^3.21(C2xC3:S3) | 288,743 |
C23.22(C2×C3⋊S3) = D4×C3⋊Dic3 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C23 | 144 | | C2^3.22(C2xC3:S3) | 288,791 |
C23.23(C2×C3⋊S3) = C62⋊14D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C23 | 144 | | C2^3.23(C2xC3:S3) | 288,796 |
C23.24(C2×C3⋊S3) = C2×C12.D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C23 | 144 | | C2^3.24(C2xC3:S3) | 288,1008 |
C23.25(C2×C3⋊S3) = C62⋊10Q8 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C23 | 144 | | C2^3.25(C2xC3:S3) | 288,781 |
C23.26(C2×C3⋊S3) = C62.247C23 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C23 | 144 | | C2^3.26(C2xC3:S3) | 288,783 |
C23.27(C2×C3⋊S3) = C4×C32⋊7D4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C23 | 144 | | C2^3.27(C2xC3:S3) | 288,785 |
C23.28(C2×C3⋊S3) = C62.129D4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C23 | 144 | | C2^3.28(C2xC3:S3) | 288,786 |
C23.29(C2×C3⋊S3) = C62⋊19D4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C23 | 144 | | C2^3.29(C2xC3:S3) | 288,787 |
C23.30(C2×C3⋊S3) = C2×C62⋊5C4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C23 | 144 | | C2^3.30(C2xC3:S3) | 288,809 |
C23.31(C2×C3⋊S3) = C62⋊24D4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C23 | 72 | | C2^3.31(C2xC3:S3) | 288,810 |
C23.32(C2×C3⋊S3) = C2×C12.59D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C23 | 144 | | C2^3.32(C2xC3:S3) | 288,1006 |
C23.33(C2×C3⋊S3) = C62.15Q8 | central extension (φ=1) | 288 | | C2^3.33(C2xC3:S3) | 288,306 |
C23.34(C2×C3⋊S3) = C2×C4×C3⋊Dic3 | central extension (φ=1) | 288 | | C2^3.34(C2xC3:S3) | 288,779 |
C23.35(C2×C3⋊S3) = C2×C6.Dic6 | central extension (φ=1) | 288 | | C2^3.35(C2xC3:S3) | 288,780 |
C23.36(C2×C3⋊S3) = C2×C12⋊Dic3 | central extension (φ=1) | 288 | | C2^3.36(C2xC3:S3) | 288,782 |
C23.37(C2×C3⋊S3) = C2×C6.11D12 | central extension (φ=1) | 144 | | C2^3.37(C2xC3:S3) | 288,784 |
C23.38(C2×C3⋊S3) = C22×C32⋊4Q8 | central extension (φ=1) | 288 | | C2^3.38(C2xC3:S3) | 288,1003 |
C23.39(C2×C3⋊S3) = C22×C4×C3⋊S3 | central extension (φ=1) | 144 | | C2^3.39(C2xC3:S3) | 288,1004 |
C23.40(C2×C3⋊S3) = C22×C12⋊S3 | central extension (φ=1) | 144 | | C2^3.40(C2xC3:S3) | 288,1005 |
C23.41(C2×C3⋊S3) = C23×C3⋊Dic3 | central extension (φ=1) | 288 | | C2^3.41(C2xC3:S3) | 288,1016 |